

The Role of Sustainable Agriculture Programs in Strengthening National Food Security

Diva Besti Aulia¹

¹ Institut Bisnis dan Informatika Kesatuan, Bogor, Indonesia

Abstract

Article history:

Received: July 9, 2023

Revised: August 25, 2023

Accepted: October 7, 2023

Published: December 30, 2023

Keywords:

Climate adaptation,
Farmer welfare,
Food security,
Sustainable agriculture,
Technology access.

Identifier:

Zera Open

Page: 108-121

<https://zeraopen.com/journal/jfsa>

National food security remains a critical aspect of sustainable development, particularly in the face of climate change, land conversion, and dependence on imported food. Sustainable agriculture programs offer a strategy that combines ecological, economic, and social dimensions to maintain long-term food availability while preserving the environment. This study examines the impact of sustainable agriculture programs on national food security by exploring both their contributions and implementation challenges. A qualitative literature review approach is employed, analyzing secondary data from scientific journals and other relevant sources descriptively and analytically. Findings indicate that these programs enhance land productivity, maintain environmental stability, improve farmer welfare, and reduce carbon emissions. However, challenges persist, including limited access to advanced technologies, low farmer capacity, inequitable market structures, and restricted financing opportunities. To maximize benefits, integrated strategies are necessary, such as climate adaptation policies, supply chain reforms, farmer capacity building, promotion of food diversification, and strengthened research initiatives. These measures aim to reinforce the role of sustainable agriculture in achieving national food security.

1. Introduction

Food security is a fundamental pillar of sustainable development and a critical component for maintaining a nation's social, economic, and political stability. In the context of increasingly complex global conditions, national food security extends beyond the mere availability of sufficient food; it also includes access, stability of supply, and nutritional quality. According to the Food and Agriculture Organization (FAO), more than 780 million people globally face chronic hunger, predominantly in developing nations. Indonesia, as an agrarian country with a large population and variable economic growth, confronts substantial challenges in ensuring food security. The risk of a food crisis is intensified by climate change, environmental degradation, global pandemics such as COVID-19, and geopolitical conflicts that disrupt international food supply chains (Wakesa et al., 2018). The national agricultural sector plays a central role in this context, as it supports the livelihoods of millions of Indonesians, yet faces structural limitations. Most farmers are smallholders with restricted access to modern technologies, capital, and markets (Rehman et al., 2022).

Traditional farming methods, which remain prevalent, often depend heavily on chemical fertilizers and monoculture, leaving crops vulnerable to ecological disruptions (Wang et al., 2022). Furthermore, ongoing conversion of agricultural land to non-agricultural uses reduces domestic food production capacity. The sector's dependence on external inputs and insufficient farmer protection mechanisms further heighten its susceptibility to crises. Sustainable agriculture emerges as a strategic solution that emphasizes productivity while integrating

ecological sustainability and social welfare. This approach incorporates practices such as crop diversification, organic fertilizers, efficient water management, and the integration of crops with livestock systems (Gonçalves et al., 2022). Its primary objective is to develop an adaptive agricultural system resilient to climate change, decrease reliance on synthetic chemicals, and enhance farmer autonomy through locally appropriate knowledge and technologies. Such strategies are considered essential to addressing long-term food security in a holistic and resilient manner (Kharel et al., 2022). Despite its potential, the adoption of sustainable agriculture in Indonesia faces several challenges. In many areas, program uptake is limited due to inadequate outreach and weak institutional and infrastructural support (Gunawan et al., 2022). Farmers often lack sufficient understanding of sustainable practices and continue to rely on conventional, environmentally harmful methods. Moreover, although government policies advocate for eco-friendly agriculture, a significant gap exists between policy formulation and implementation, limiting the effectiveness of these programs in enhancing national food security.

External factors also exacerbate vulnerabilities, including global food price volatility, uneven logistics distribution, and climate-related disruptions to planting cycles. These challenges indicate that achieving food security requires more than increasing production; it necessitates transforming agricultural systems into sustainable and adaptive models. Scientific evidence directly connecting sustainable agriculture programs to national food security outcomes remains limited. Existing studies often focus on technical objectives, such as yield improvements or input efficiency, without addressing broader dimensions of food security, including

accessibility, stability, and system sustainability. Additionally, a lack of region-specific studies across Indonesia's diverse agroecological and socioeconomic conditions hinders the development of locally tailored policies (Nughroho et al., 2022). In response to these issues, this study aims to evaluate the effectiveness of sustainable agriculture programs in strengthening national food security. It also seeks to identify field-level barriers and provide strategic recommendations for policymakers and stakeholders to formulate adaptive, inclusive, and long-term-oriented agricultural strategies. By adopting this approach, Indonesia can establish an agricultural system that is productive, environmentally sustainable, and capable of ensuring reliable food access for all its citizens.

2. Methods

This study utilizes a qualitative methodology with a descriptive-analytical design to gain a comprehensive understanding of the influence of sustainable agriculture programs on national food security. The qualitative approach was selected because it allows for an in-depth exploration, interpretation, and contextual analysis of data obtained indirectly from various sources. The study relies on secondary data collected through an extensive literature review. Sources include academic books, peer-reviewed journals, scientific articles, and official publications, both national and international. Data sources were chosen purposively based on their relevance to the research objectives and their alignment with the topic under investigation. The study focuses on sustainable agriculture programs as the independent variable and national food security as the dependent variable.

Sustainable agriculture programs are defined as policies, initiatives, or practices designed to preserve natural resources, enhance agricultural productivity in an environmentally friendly manner, and improve the social and economic welfare of farmers. National food security is conceptualized as a state in which the population's food needs are adequately met, including aspects of availability, accessibility, proper utilization, and long-term stability. Data analysis was conducted qualitatively using content analysis, which involved examining literature and documents to identify key themes, patterns, and logical relationships between the variables. The findings were interpreted to assess how sustainable agriculture programs, implemented in Indonesia and other countries, contribute to improving national food security.

The analysis also considers challenges and enabling factors affecting program implementation, as well as the socio-economic and ecological conditions that influence their effectiveness. To ensure the reliability and validity of the data, source triangulation was applied, comparing and verifying information from multiple literature sources to ensure consistency. In addition, a critical evaluation of all sources was conducted to confirm the accuracy, credibility, and relevance of the information used in the study. Through this systematic approach, the research provides an interpretative and evidence-based understanding of the ways in which sustainable agriculture programs can enhance food security while considering practical implementation challenges and contextual influences across diverse settings.

3. Results

3.1. The Role of Sustainable Agriculture in Strengthening National Food Security and Environmental Resilience in Indonesia

Sustainable agriculture represents an approach that integrates environmental, economic, and social dimensions to ensure long-term agricultural productivity while conserving natural resources. This approach emphasizes environmentally friendly practices, such as using organic fertilizers, implementing agroforestry systems, and applying efficient water management techniques, to maintain ecosystem sustainability while fulfilling food requirements. National food security, according to Law No. 18 of 2012, is defined as a condition in which adequate, safe, nutritious, equitable, and affordable food is available for all Indonesians, supporting a healthy and productive life in a sustainable manner. In Indonesia, sustainable agriculture programs have a notable impact on national food security, influencing aspects such as food availability, accessibility, utilization, and stability. These programs play a crucial role in improving land productivity and ensuring sufficient food supply. By adopting eco-friendly practices such as organic fertilizers and bioactivators, farmers can increase crop yields without harming soil health.

Umesh et al. (2018) highlight that these practices are essential to meeting the growing food demands from population increases while maintaining environmental sustainability. Gonçalves et al. (2021) demonstrate that agroforestry, which combines food crops with productive trees, not only enhances productivity but also generates additional income for rural households through timber, fruit, or other non-food products. Despite these benefits, the National Food Agency's 2018–2020

report indicates that domestic production still falls short in fulfilling certain strategic commodities. For example, Indonesia imports 80–90% of soybeans and 65–70% of refined sugar, showing challenges in achieving self-sufficiency for these key foods. Sustainable agriculture also strengthens environmental stability and resilience against climate change. As Southeast Asia's largest economy, Indonesia is particularly susceptible to climate-related risks such as droughts and floods, which disrupt food production. The Food and Agriculture Organization (FAO) reports that climate change has negatively affected food production in several regions of Indonesia. Techniques such as organic farming and efficient water management help maintain soil quality and ecosystem resilience, ensuring consistent food output even under adverse climatic conditions. Sustainable agriculture supports national development priorities by improving food availability and quality through eco-friendly methods, reducing reliance on harmful chemical inputs, and preserving natural resources for future generations.

Additionally, these programs enhance farmers' welfare and economic access. Initiatives such as the FAST Program provide smallholder farmers with improved access to financing, technology, and training, thereby increasing income and strengthening their role within the food supply chain. Fristin and Supanto (2021) emphasize the need to integrate upstream and downstream processes and leverage cooperative technologies to reinforce national food security. Gunawan et al. (2022) note that organic farming communities promote healthier food consumption patterns and improve food affordability for the public. Nevertheless, smallholder farmers continue to face challenges, including oligopolistic market structures

controlled by large traders and limited access to productive land due to leasing arrangements, which restrict their capacity to maximize income and contribute fully to food security. Sustainable agriculture also contributes to reducing greenhouse gas emissions and supporting ecosystem preservation. Globally, food production accounts for roughly one-third of greenhouse gas emissions, and in Indonesia, 58% of emissions in 2019 were linked to food systems and land use, according to World Resources Institute (WRI) Indonesia. By adopting organic fertilizers and preserving forests, sustainable agriculture helps lower the sector's carbon footprint while protecting biodiversity. WRI Indonesia also emphasizes that overuse of chemical fertilizers has caused soil degradation, reducing long-term productivity. Transitioning to organic inputs and sustainable land management practices is therefore crucial to maintaining soil fertility and ensuring stable, long-term food availability.

3.2. Sustainable Agriculture for Strengthening Indonesia's Food Security

Implementation of sustainable agriculture programs in Indonesia, while beneficial, faces multifaceted challenges. Climate change and natural disasters are major obstacles, as unpredictable weather patterns, including prolonged droughts or floods, directly reduce crop yields. The FAO reported that some regions experienced up to a 15% decline in rice production due to El Niño. This makes farmers, especially those dependent on rain-fed agriculture, highly vulnerable to climate variability. Limited access to technology is another significant barrier. Many smallholder farmers in rural areas lack modern tools such as drip irrigation, climate-resilient seeds, or digital crop monitoring systems. A 2021 study by the Center for

Agricultural Research and Development revealed that only about 30% of farmers consistently utilized eco-friendly technologies due to high costs, inadequate infrastructure, and limited training in remote areas. Unfair market structures further exacerbate challenges. Oligopolistic markets dominated by large traders often leave farmers with low prices for crops like rice and horticultural products. Opolot et al. (2018) highlight that smallholders are trapped in inequitable supply chains, reducing incentives to adopt sustainable practices requiring higher initial investments. Land conversion into industrial or residential areas also threatens food security. Data from the Ministry of Agrarian Affairs and Spatial Planning (*Kementerian Agraria dan Tata Ruang/Badan Pertanahan Nasional /ATR-BPN*) shows that Indonesia loses roughly 100,000 hectares of agricultural land annually, reducing domestic production capacity. Many farmers lease land, increasing financial burdens. Limited capacity in adopting sustainable practices remains a challenge, as smallholders often lack knowledge in organic waste management, crop rotation, or biofertilizer use (Tataridas et al., 2022). Dependence on imported commodities, such as soybeans and sugar, further exposes national food security to supply chain risks (Tian et al., 2021). Additionally, limited access to financing hinders smallholders from investing in sustainable inputs like organic fertilizers or high-quality seeds (Khan et al., 2021).

Addressing these challenges requires integrated solutions. Climate adaptation policies, such as water-efficient irrigation and climate-resilient seeds, can mitigate natural risks (Thompson et al., 2022). Enhancing technology access through government, private sector, and research collaboration, coupled with training programs and subsidies, facilitates adoption of eco-friendly tools. Supply chain

reform through strong farmer cooperatives and digital marketing platforms ensures fair prices. Protecting agricultural land via stricter regulations and sustainability-based zoning secures long-term production capacity (Hardy et al., 2021). Expanding farmer education, including practical training on organic farming and soil management, strengthens capacity (Azadi et al., 2021). Promoting crop diversification, including climate-resilient local crops like sorghum, yam, or taro, reduces import dependence (Linaza et al., 2021). Accessible financing through low-interest microcredits and incentives for sustainable inputs encourages adoption.

Research and innovation are essential, including developing biofertilizers, disease-resistant crops, and efficient water management tailored to local conditions (Valerio et al., 2018). Consumer awareness campaigns further increase demand for organic and sustainable products, supporting farmers economically. Sustainable agriculture programs improve national food security by enhancing land productivity, environmental stability, farmer welfare, and reducing greenhouse gas emissions. Techniques like organic farming, agroforestry, and efficient water management strengthen food availability, access, and utilization. Addressing challenges through climate adaptation, technology access, supply chain reform, land protection, farmer education, crop diversification, financing, research, and consumer awareness ensures sustainable, equitable, and resilient food security for Indonesia's future.

4. Conclusion

Sustainable agriculture programs are crucial for enhancing national food security in Indonesia. By integrating ecological, economic, and social dimensions,

these programs increase land productivity, promote environmental stability, and improve farmer welfare. Practices such as organic fertilizers, agroforestry, and efficient water management help sustain ecosystems while ensuring the long-term availability and quality of food. In the face of global food insecurity and climate change challenges, sustainable agriculture provides a resilient and adaptive foundation for the national food system. Despite these benefits, implementation in Indonesia faces multiple challenges. Extreme climate events, limited access to modern technology, market structures unfavorable to smallholders, conversion of productive agricultural land, low farmer capacity, heavy dependence on imported strategic foods, and restricted financing hinder widespread adoption.

Furthermore, discrepancies between policies and actual practices limit the program's reach and effectiveness across different farmer groups. To maximize the impact of sustainable agriculture on national food security, a coordinated and integrated approach is essential. Strengthening climate adaptation measures, expanding technology access and training, reforming supply chains, protecting agricultural land, facilitating financing, and promoting local research and innovation are critical strategies. Additionally, increasing consumer awareness of sustainable food products can generate market demand that supports eco-friendly farming practices.

References

Azadi, H., Moghaddam, S. M., Burkart, S., Mahmoudi, H., Van Passel, S., Kurban, A., & Lopez-Carr, D. (2021). Rethinking resilient agriculture: From climate-

smart agriculture to vulnerable-smart agriculture. *Journal of Cleaner Production*, 319, 128602.

Fristin, Y., & Supanto, F. (2021). Development Model of Rice Supply Chain Management to Ensure Self-Sufficiency and Food Security. *Jurnal Bisnis dan Manajemen*, 8(2), 353-366.

Gonçalves, C. D. B. Q., Schlindwein, M. M., & Martinelli, G. D. C. (2021). Agroforestry systems: a systematic review focusing on traditional indigenous practices, food and nutrition security, economic viability, and the role of women. *Sustainability*, 13(20), 11397.

Gunawan, E., Darwis, V., Syukur, M., Ariningsih, E., Saliem, H. P., & Mardianto, S. (2022). Farmers' perception, awareness, and constraints of organic rice farming in Indonesia. *Open Agriculture*, 7(1).

Hardy, K., Orridge, T., Heynes, X., Gunasena, S., Grundy, S., & Lu, C. (2021). Farming the future: Contemporary innovations enhancing sustainability in the agri-sector. *Annual Plant Reviews Online*, 4(2), 263-294.

Khan, N., Ray, R. L., Sargani, G. R., Ihtisham, M., Khayyam, M., & Ismail, S. (2021). Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture. *Sustainability*, 13(9), 4883.

Kharel, M., Dahal, B. M., & Raut, N. (2022). Good agriculture practices for safe food and sustainable agriculture in Nepal: A review. *Journal of Agriculture and Food Research*, 10, 100447.

Linaza, M. T., Posada, J., Bund, J., Eisert, P., Quartulli, M., Döllner, J., ... & Lucat, L. (2021). Data-driven artificial intelligence applications for sustainable precision agriculture. *Agronomy*, 11(6), 1227.

Nugroho, H. Y. S. H., Indrawati, D. R., Wahyuningrum, N., Adi, R. N., Supangat, A. B., Indrajaya, Y., ... & Hani, A. (2022). Toward water, energy, and food security in rural Indonesia: A review. *Water*, 14(10), 1645.

Opolot, H. N., Isubikalu, P., Obaa, B. B., & Ebanyat, P. (2018). Influence of university entrepreneurship training on farmers' competences for improved productivity and market access in Uganda. *Cogent Food & Agriculture*, 4(1), 1469211.

Rehman, A., Farooq, M., Lee, D. J., & Siddique, K. H. (2022). Sustainable agricultural practices for food security and ecosystem services. *Environmental Science and Pollution Research*, 29(56), 84076-84095.

Tataridas, A., Kanatas, P., Chatzigeorgiou, A., Zannopoulos, S., & Travlos, I. (2022). Sustainable crop and weed management in the era of the EU Green Deal: A survival guide. *Agronomy*, 12(3), 589.

Thompson, C. D., Severe, E., Norris, A. J., Gudmundsen, J., Lewis, M., Currit, E., ... & Abbott, B. W. (2022). Improving sustainable agriculture promotion: an explorative analysis of NRCS assistance programs and farmer perspectives. *International Journal of Agricultural Sustainability*, 20(6), 1079-1099.

Tian, Z., Wang, J. W., Li, J., & Han, B. (2021). Designing future crops: challenges and strategies for sustainable agriculture. *The Plant Journal*, 105(5), 1165-1178.

Umesh, S., Manukumar, H. M., & Chandrasekhar, B. (2018). Sustainable agriculture and food security. In *Biotechnology for sustainable agriculture* (pp. 67-92). Woodhead Publishing.

Valerio, E., Hilmati, N., Prior, J., & Dahlanuddin, D. (2022). Analysis of the agricultural innovation system in Indonesia: A case study of the beef sector in Nusa Tenggara Barat. *Agricultural Systems*, 203, 103529.

Wang, D., Saleh, N. B., Byro, A., Zepp, R., Sahle-Demessie, E., Luxton, T. P., ... & Su, C. (2022). Nano-enabled pesticides for sustainable agriculture and global food security. *Nature nanotechnology*, 17(4), 347-360.

Wekesa, B. M., Ayuya, O. I., & Lagat, J. K. (2018). Effect of climate-smart agricultural practices on household food security in smallholder production systems: micro-level evidence from Kenya. *Agriculture & Food Security*, 7(1), 1-14.