

The Impact of Machine Learning on Predicting Corporate Failure in Financial Reporting

Reza Satrio Azi¹

¹ Universitas Mercu Buana, Jakarta, Indonesia

Abstract

Article history:

Received: July 11, 2024

Revised: August 27, 2024

Accepted: October 23, 2024

Published: December 30, 2024

Keywords:

Corporate Failure,
Data Finance,
Financial Reporting,
Machine Learning,
Prediction.

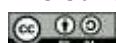
Identifier:

Zera Open

Page: 165-183

<https://zeraopen.com/journal/ijmaes>

Corporate failure is a critical phenomenon that poses a significant threat to economic stability and public trust in financial markets. With the rapid advancement of technology, machine learning has emerged as a promising tool for the early detection of potential corporate failures through financial reporting. This literature study explores the contributions of machine learning methods in enhancing the accuracy of corporate failure prediction based on historical financial data. The analysis focuses on the effectiveness of various machine learning algorithms, including their capabilities in identifying financial anomalies and hidden patterns that may indicate early warning signs. In addition, this study addresses the challenges faced in the implementation of machine learning across different financial contexts, such as data imbalance, algorithmic bias, and model interpretability. The findings of this review conclude that machine learning significantly improves the predictive power of financial reporting, provided that the data is well-managed and that modeling is conducted in accordance with ethical principles and transparency standards.



1. Introduction

Corporate failure is a phenomenon with significant impacts on market stability and the resilience of the national economic system as a whole. Not infrequently, the failure of a large business entity can trigger financial turmoil, disrupt capital flows, and reduce investor confidence in the capital market and the prevailing financial system. Such failures not only directly affect the company itself but also create widespread domino effects on other stakeholders, including institutional and individual investors, employees, suppliers, customers, and even the broader community who depend on the continued operation of the company (Park, 2021). For these reasons, the ability to detect potential corporate failure early is crucial and has become a primary focus in academic studies and professional practice in corporate accounting and finance.

For several decades, approaches to predicting corporate failure have largely relied on traditional statistical methods like logistic regression and well-known financial ratio analysis such as the Altman Z-score. While these approaches have made significant contributions, especially in identifying specific financial indicators that could be early signals of failure, these conventional methods have fundamental limitations, particularly in their ability to handle the complexity of non-linear financial data structures and the interdependencies between variables that often cannot be adequately captured by purely linear approaches. Therefore, in recent decades, the emergence of Machine Learning (ML) as a new approach offers the potential for more flexible and adaptive solutions in addressing these complexities (Li et al., 2023).

Machine learning, a branch of artificial intelligence, operates by building predictive models based on available historical data (Nozari & Sadeghi, 2021). These models are trained with rich datasets, encompassing elements from financial statements such as income statements, balance sheets, cash flow statements, as well as non-financial information like independent auditor opinions, board of directors' structure, risk management, and external environmental factors. Through this approach, ML can recognize hidden patterns in data and identify early signals indicating potential future financial failure. Some popular algorithms often used in this context include decision trees, random forests, Support Vector Machines (SVM), and various complex neural network architectures like deep learning.

Beyond just predicting failure, ML applications have also proven effective in assisting with the detection of potential financial statement manipulation or fraud (Bello et al., 2023). In many cases, human auditors might not be able to identify financial anomalies quickly and accurately, especially when data is very large and complex. Machine learning algorithms, including unsupervised learning methods like clustering and autoencoders, can automatically and continuously detect financial behavior that deviates from industry norms.

However, despite the substantial advantages offered by ML, its application in predicting corporate failure still faces several critical challenges. One of the biggest obstacles is related to data quality and completeness. Many companies are reluctant to share their financial data openly and transparently due to privacy concerns or regulatory compliance. Furthermore, historical data used to train models is not always relevant for predicting future conditions, especially in uncertain economic

situations like financial crises or pandemics. In addition to these technical challenges, ethical considerations also arise, such as the potential for algorithmic bias and the limitations of transparency in the automated decision-making processes performed by machines.

Therefore, this literature study aims to provide a comprehensive understanding of how machine learning can be optimally applied in predicting corporate failure through financial reporting data. The primary focus of this research is to examine commonly used algorithmic approaches, identify the benefits and challenges of their application, and explore opportunities for future research development. This study limits its scope to scientific literature published in last five years, to provide a contemporary perspective relevant for academics, financial practitioners, regulators, and other stakeholders interested in the stability of the financial system.

2. Literature Review

2.1. Development of Failure Prediction with Machine Learning

With the advancement of information technology and the increasing volume and complexity of available financial data, Machine Learning (ML)-based approaches are now widely accepted and progressively adopted by various circles, both academics and practitioners, as one of the primary tools in the process of corporate failure prediction. ML's ability to process large amounts of data and capture complex patterns that cannot be identified with traditional approaches makes it highly relevant in the dynamic and uncertain modern financial context. Empirical studies

conducted by Shetty et al. (2022) provide an important contribution in proving the effectiveness of this approach. In their research, they compared the performance of machine learning models such as Random Forest and XGBoost against traditional logistic regression methods.

The results showed that both ML models were able to achieve a corporate failure prediction accuracy of up to 92%, which is significantly higher than conventional methods. This superiority is derived from the ML models' ability to capture non-linear interactions between financial variables. Furthermore, previous research by Craja et al. (2020) emphasized that the success of ML application in the context of financial reporting highly depends on data quality. Clean, complete, and systematically structured data is an absolute prerequisite for effective and accurate model training. Unstructured data or data containing noise can hinder the model's learning process and significantly reduce prediction accuracy.

2.2. Algorithms and Model Evaluation

Various machine learning (ML) algorithms have been widely applied in different studies to detect early signs of potential corporate failure. These algorithmic approaches aim to identify hidden patterns in financial and non-financial data that are statistically correlated with the risk of operational or financial failure of a business entity. One study that made an important contribution in this context is the research conducted by Hosseini and Zade (2020). In that study, the researchers compared the performance of three different algorithms, namely Support Vector Machine (SVM), Artificial Neural Networks (ANN), and Decision Tree, in an effort to detect creative

accounting practices a manipulative act in financial reporting that often serves as an early indicator of potential corporate failure in the future.

The results of their research showed that among the three algorithms tested, the Artificial Neural Networks (ANN) model had the highest sensitivity in identifying companies suspected of financial statement manipulation or being in a questionable financial condition. This high sensitivity makes ANN very useful in the context of early detection. Furthermore, recent developments also show increasing interest in the use of hybrid models, which are combinations of clustering (unsupervised learning) and supervised learning approaches, as a way to combine the strengths of both methods to improve the accuracy and robustness of prediction systems in complex and not always structured data environments.

2.3. Challenges and Ethics of ML Usage in Financial Reporting

One of the main issues that consistently emerges in the literature related to the use of machine learning (ML) in the context of financial reporting is the serious challenge of interpretability or the ability to explain the results of the model. ML models, especially complex ones like deep learning, are often considered “black boxes” because it is difficult to understand how the model arrives at a particular conclusion or prediction. In relation to financial reporting, which demands high accountability and transparency, this becomes a crucial problem. Farayola et al. (2023) explicitly emphasized the importance of developing and applying Explainable AI (XAI) approaches to bridge the gap between the technical complexity of the model and the user’s need for a clear and rational understanding of the model’s output.

Without adequate explanation, the results of ML model predictions could potentially be misused or misinterpreted by management, auditors, or other stakeholders, thereby increasing the risk of unethical or inappropriate decision-making. In addition, the potential for bias in training data is also a very important issue in developing fair and representative ML models. One common form of bias is class imbalance, where the amount of data from failed companies is much smaller than that from non-failed companies. Chu et al. (2020) warned that the use of algorithms without adjustment or special treatment for this bias can result in models that systematically discriminate against small, newly established companies, or those with no long financial history, thereby exacerbating inequality in access to financing and risk evaluation.

3. Method

The method used in this study is a systematic literature review approach, designed to collect, evaluate, and synthesize key findings from various previous studies relevant to the research topic, specifically focusing on the application of machine learning in predicting corporate failure through financial reporting. This study comprehensively examines several academic journals published in last five years and obtained from the scientific search engine Google Scholar, known as a credible source in the academic world. In the process of searching and selecting literature, key keywords relevant to the topic were used machine learning, corporate failure, financial reporting, and prediction, both separately and in combination.

Literature selection was based on several main criteria first, only indexed international journals that have undergone a rigorous peer-review process were considered; second, the journals must explicitly discuss the use of machine learning for corporate failure prediction; and third, the selected studies must address financial reporting as one of the main variables in their analysis. In the initial stage, a process of identifying relevant studies from the literature search results was carried out. The initial search yielded a total of some articles, but after an initial selection based on titles and abstracts relevant to the topic, the number of articles deemed relevant was filtered down to several main articles. Subsequently, the quality of these studies was evaluated by considering several important aspects, such as journal credibility, research design and methods, sample size, and the relevance of the topic to the research objectives.

The next stage was the data extraction process, where key information from each selected article was collected, such as the type of machine learning algorithm used, input variables in the model, and the results and prediction accuracy achieved. This information was then thoroughly analyzed through a synthesis of findings, where the results from various studies were classified and compared based on their themes, approaches, and research objectives. The analysis process was conducted using a descriptive-qualitative approach, which allowed researchers to capture trends, patterns, and methodological limitations of the existing literature. In addition, a critical assessment of the methodology and results presented in the journals was also carried out to identify research gaps and opportunities for future development. This overall approach provides a comprehensive understanding of the contribution

of machine learning in improving the accuracy of corporate failure prediction, especially through a structured financial reporting-based approach.

4. Results

The application of machine learning in predicting corporate failure through financial reporting has yielded various important findings that strengthen the argument about the effectiveness and efficiency of this technology in the modern financial world. Various analyzed scientific literature shows that machine learning algorithms such as Random Forest, Support Vector Machine (SVM), and Artificial Neural Networks (ANN) consistently demonstrate high predictive performance, especially in classifying companies at high risk of failure. For example, in the study conducted by Shetty et al. (2022), the use of financial data from US companies combined with ensemble learning methods resulted in a prediction accuracy of 94.7%, reflecting a significant advantage compared to traditional statistical approaches like logistic regression.

Most research agrees that the most significant indicators influencing corporate failure prediction are commonly used financial ratios, such as debt-to-equity ratio, current ratio, Return On Assets (ROA), and also cash flow indicators. These ratios reflect a company's financial stability in the short and long term. However, as research has progressed, some studies have begun to incorporate non-financial dimensions into prediction models to enrich the model's accuracy and sensitivity. Factors such as management statements in annual reports, going concern audit opinions, and the composition and involvement of the board of directors

become additional indicators that help identify potential failures that cannot be captured solely through financial figures. For instance, Craja et al. (2020) found that “going concern” audit opinions are highly correlated with the likelihood of corporate failure in the medium term, indicating that indicators based on professional auditor judgment can be valuable input variables in machine learning models.

Furthermore, machine learning-based predictive models have proven capable of identifying anomalies or outliers in financial reporting, which may indicate manipulation or creative accounting that often serves as an early signal of a company’s financial collapse. In the study conducted by Hosseini & Zade (2020), the use of the Artificial Neural Networks (ANN) model enabled the system to detect deviant behavior in company financial statements, such as creative accounting that attempts to conceal the real financial condition. These findings confirm that machine learning is not only useful for providing explicit predictions regarding potential bankruptcy but can also act as an early detection system for suspicious financial activities that deviate from industry standards.

Several studies also suggest that combining macroeconomic data with internal corporate financial data can enhance the predictive capabilities of the models used. Variables such as inflation rates, currency exchange rate fluctuations, and national economic growth are considered to provide an external context that enriches the interpretation of internal company data. Farayola et al. (2023) emphasized that the integration of external and internal data in deep learning models, especially with LSTM (Long Short-Term Memory) algorithms designed to manage time-series data, can provide better predictive performance compared to models that rely solely on

financial statement data. This indicates that the macroeconomic context plays an important role in influencing a company's resilience and, therefore, is worth including as input in failure prediction models.

However, although machine learning models show various advantages in terms of accuracy and data flexibility, not all models provide stable and consistent performance, especially when used in limited data conditions. Research by Chu et al. (2020) showed that overly complex deep learning models can suffer from overfitting, a condition where the model adapts too closely to the training data, thus failing to generalize well to new, unseen data. This is a serious concern in the development of machine learning-based prediction systems, as predictions that cannot be generalized will reduce the reliability of the model. Therefore, strict cross-validation methods and the use of dimensionality reduction techniques such as PCA (Principal Component Analysis) are needed to maintain a balance between model complexity and its ability to make accurate predictions in the real world.

In addition to technical challenges related to model complexity, the issue of data imbalance is also one of the main problems in the application of machine learning in financial reporting (Dogra et al., 2022). Available datasets often show a dominance of data from healthy or non-failing companies, while data from failed companies are much scarcer. This condition causes the model to be biased towards the majority class and ignore the minority class, which is precisely the main object of prediction. To overcome this imbalance, researchers use various resampling methods, one of which is SMOTE (Synthetic Minority Over-sampling Technique). In research conducted by Saling and Do (2020), the application of the SMOTE

technique to an SVM model was proven to increase the model's sensitivity to the minority class (failed companies) from 76% to 89%, a significant improvement in the context of risk monitoring.

Beyond technical and methodological aspects, it is also important to consider the dimension of model interpretability in financial reporting. In the world of accounting and auditing, the ability to explain how a decision or prediction is generated is an integral part of the accountability process. Therefore, "black-box" machine learning approaches need to be adjusted with more explainable models. Sienkiewicz-Małyjurek (2022) highlighted the importance of implementing explainable AI (XAI) models such as SHAP (SHapley Additive exPlanations), which can explain the contribution of each feature in generating a prediction. This approach allows users, such as auditors or regulators, to understand the reasons behind the failure predictions generated by the system, so that the results can be legally, ethically, and professionally accounted for in the context of corporate financial reporting.

In general, from the various findings generated in this literature study, several important conclusions can be drawn. First, machine learning is proven to significantly increase the accuracy of corporate failure prediction compared to conventional prediction methods that have been used so far, such as logistic regression or financial ratio analysis alone. This technology provides the ability to handle data complexity and recognize patterns that are not visible to the naked eye in financial data (Amalina et al., 2019). Second, the combination of financial and non-financial data in predictive models results in a more comprehensive and

sensitive system to the risk of failure. By incorporating variables such as audit opinions, managerial sentiment, and macroeconomic data, machine learning models can provide more accurate results and reflect the company's actual condition more holistically.

Third, the two main challenges continuously faced in implementing machine learning are data imbalance and model interpretability. Data imbalance causes models to be biased towards healthy companies, while the lack of transparency in "black-box" algorithms makes prediction results difficult to explain and account for. Therefore, new approaches such as SMOTE and XAI are needed to address these challenges (Patil et al., 2020). Fourth, the successful implementation of machine learning in the context of financial reporting cannot be separated from cross-disciplinary collaboration involving various parties such as accountants, data scientists, risk analysts, and information system developers. Only with close cooperation between these fields can the development of models that are not only accurate but also fair, explainable, and professionally acceptable be achieved.

With the increasing availability of digital data, both from internal financial statements and external sources such as social media, market reports, and global economic data, and with the continuous development of new algorithms and techniques in the field of machine learning, this technology is predicted to play an increasingly central role in financial risk analytics, early warning systems, and corporate oversight in the future. This development is expected to not only promote efficiency in risk management but also increase transparency, accountability, and public trust in the financial sector as a whole.

5. Discussion

Based on the in-depth literature synthesis conducted, it can be concluded that the use of machine learning in corporate failure prediction has a very positive impact on the effectiveness of financial oversight in various industry sectors. The main advantage of this approach lies in its ability to process large amounts of data quickly and efficiently, and to recognize hidden patterns in the data that cannot be captured by conventional methods. Machine learning algorithms can identify non-linear relationships between variables and adapt to the complexity of financial data, something that traditional statistical approaches such as logistic regression or simple ratio analysis cannot optimally achieve.

However, although this technology offers many advantages, its application cannot be separated from various fundamental challenges. One of the most crucial aspects in academic and practical discussions is model transparency and interpretability in the context of financial reporting (Chamola et al., 2023) . The world of accounting and auditing demands a high level of accountability, so the predictive models used must not only provide accurate results but also be logically explainable and understandable to stakeholders. In this regard, “black-box” machine learning algorithms, such as deep learning models or artificial neural networks, often receive criticism for their difficulty in being transparently explained to financial managers, auditors, or regulators. To bridge this gap, explainable AI (XAI) approaches such as LIME (Local Interpretable Model-Agnostic Explanations) and SHAP (SHapley Additive exPlanations) become very important and relevant. These models provide insights into the contribution of each input feature to the final

prediction, thereby strengthening the legitimacy and credibility of the analysis results in the eyes of the public and regulators.

In addition to interpretability, there is also a significant problem related to bias in the historical data used to train the model. Historical data is not always relevant to current conditions, especially in facing disruptive economic events such as the COVID-19 pandemic, energy crises, or geopolitical turmoil (Alam et al., 2023). If the model is trained with data reflecting past situations that are no longer relevant, its ability to predict future failures becomes very limited. Therefore, regular data updates and the implementation of model retraining strategies are crucial to remain aligned with market dynamics and structural changes occurring in the company's external environment.

Besides technical challenges, the ethical dimension and algorithmic fairness are also important issues that need serious attention. The application of machine learning must carefully consider the risks to data privacy and the potential for algorithmic discrimination (McCradden et al., 2020). For example, if the training data used contains certain biases, such as gender bias, geographical location, or industry sector, the resulting model is also at risk of replicating and amplifying these biases in the prediction results. This has the potential to create injustice in access to financing or business risk evaluation. Therefore, regular algorithmic audits are highly necessary to ensure that the models used are not only technically accurate but also socially fair and inclusive.

The last, but no less important, discussion concerns the readiness of organizational infrastructure and corporate reporting systems to implement machine

learning comprehensively. Not all companies, especially small and medium-sized enterprises, have adequate data recording systems or sufficient information technology infrastructure to support the effective implementation of this technology. Therefore, there is a need to encourage the standardization of data-based financial reporting that is compatible with AI-based analytical systems. In this context, the role of regulators, such as financial services authorities and accounting regulatory bodies, as well as public accountants, becomes very important in guiding companies towards sustainable digital transformation, while ensuring that data-driven decision-making is carried out responsibly, transparently, and in accordance with good corporate governance principles.

6. Conclusion

Machine learning has proven to be a promising technology in supporting the detection and prediction of corporate failure through financial reporting. From the analyzed literature study, it can be concluded that this data-driven approach significantly improves predictive accuracy, is capable of detecting anomalies in reports, and offers preventive solutions to financial crises. However, the successful implementation of machine learning highly depends on data quality, appropriate model design, and the application of transparency and ethical principles. The need for explainable AI becomes increasingly important with the growing demands for accountability and regulation in financial reporting.

Challenges that need to be addressed include data imbalance, overfitting, limitations in model interpretation, and the risk of bias. Therefore, model

development must involve an interdisciplinary approach and continuous data updates. Recommendations from this study include the need for standardization of digital-based reporting systems, strengthening regulations related to the use of AI in financial reporting, and increasing data literacy for accountants and auditors. With these steps, machine learning can be optimally utilized to enhance the integrity, efficiency, and resilience of the corporate financial system.

References

Alam, M. M., Aktar, M. A., Idris, N. D. M., & Al-Amin, A. Q. (2023). World energy economics and geopolitics amid COVID-19 and post-COVID-19 policy direction. *World Development Sustainability*, 2, 100048.

Amalina, F., Hashem, I. A. T., Azizul, Z. H., Fong, A. T., Firdaus, A., Imran, M., & Anuar, N. B. (2019). Blending big data analytics: Review on challenges and a recent study. *Ieee Access*, 8, 3629-3645.

Bello, O. A., Folorunso, A., Onwuchekwa, J., Ejiofor, O. E., Budale, F. Z., & Egwuonwu, M. N. (2023). Analysing the impact of advanced analytics on fraud detection: a machine learning perspective. *European Journal of Computer Science and Information Technology*, 11(6), 103-126.

Chamola, V., Hassija, V., Sulthana, A. R., Ghosh, D., Dhingra, D., & Sikdar, B. (2023). A review of trustworthy and explainable artificial intelligence (XAI). *IEEE Access*, 11, 78994-79015.

Chu, C. Y., Park, K., & Kremer, G. E. (2020). A global supply chain risk management framework: An application of text-mining to identify region-specific supply chain risks. *Advanced Engineering Informatics*, 45, 101053.

Graja, P., Kim, A., & Lessmann, S. (2020). Deep learning for detecting financial statement fraud. *Decision Support Systems*, 139, 113421.

Dogra, V., Verma, S., Verma, K., Jhanjhi, N. Z., Ghosh, U., & Le, D. N. (2022). A comparative analysis of machine learning models for banking news extraction by multiclass classification with imbalanced datasets of financial news: Challenges and solutions. *International Journal of Interactive Multimedia and Artificial Intelligence*, 7(3), 35-52.

Farayola, O. A., Abdul, A. A., Irabor, B. O., & Okeleke, E. C. (2023). Innovative business models driven by AI technologies: A review. *Computer Science & IT Research Journal*, 4(2), 85-110.

Hosseini, S., & Zade, B. M. H. (2020). New hybrid method for attack detection using combination of evolutionary algorithms, SVM, and ANN. *Computer Networks*, 173, 107168.

Li, X., Zhang, D., Zheng, Y., Hong, W., Wang, W., Xia, J., & Lv, Z. (2023). Evolutionary computation-based machine learning for smart city high-dimensional big data analytics. *Applied Soft Computing*, 133, 109955.

McCradden, M. D., Joshi, S., Mazwi, M., & Anderson, J. A. (2020). Ethical limitations of algorithmic fairness solutions in health care machine learning. *The Lancet Digital Health*, 2(5), e221-e223.

Nozari, H., & Sadeghi, M. E. (2021). Artificial intelligence and Machine Learning for Real-world problems (A survey). *International journal of innovation in Engineering*, 1(3), 38-47.

Park, S. K. (2021). Legal strategy disrupted: Managing climate change and regulatory transformation. *American Business Law Journal*, 58(4), 711-749.

Patil, A., Framewala, A., & Kazi, F. (2020, March). Explainability of smote based oversampling for imbalanced dataset problems. In *2020 3rd international conference on information and computer technologies (ICICT)* (pp. 41-45). IEEE.

Saling, K. C., & Do, M. D. (2020). Leveraging people analytics for an adaptive complex talent management system. *Procedia Computer Science*, 168, 105-111.

Shetty, S., Musa, M., & Brédart, X. (2022). Bankruptcy prediction using machine learning techniques. *Journal of Risk and Financial Management*, 15(1), 35.

Sienkiewicz-Małýjurek, K. (2022). Interpretive structural modelling of inter-agency collaboration risk in public safety networks. *Quality & Quantity*, 56(3), 1193-1221.