

Artificial Intelligence Governance in Public Sector Decision Making

Muhammad Fuad Riyadi¹

¹ Universitas Sarjanawiyata Tamansiswa, Yogyakarta, Indonesia

Abstract

Article history:

Received: July 9, 2023

Revised: August 20, 2023

Accepted: October 15, 2023

Published: December 30, 2023

Keywords:

Artificial Intelligence,
Governance,
Public Decision-Making,
Sustainability,
Transparency.

Identifier:

Zera Open

Page: 134-151

<https://zeraopen.com/journal/ijgam>

The use of artificial intelligence in the public sector is increasingly becoming a strategic necessity to improve the effectiveness of decision-making and the quality of government services. However, the success of artificial intelligence implementation is determined not only by technological sophistication but also by governance readiness, institutional capacity, and public legitimacy. This article presents a narrative review of Google Scholar-indexed literature published in the past five years, focusing on the role of artificial intelligence in supporting responsive, accountable, and sustainable decision-making. The study findings indicate that artificial intelligence can strengthen government analytical capabilities, accelerate policy responses, and improve accuracy in large-scale data management, particularly in the public service sector, which requires responsive processes. However, key challenges identified include the risk of algorithmic bias, the lack of audit mechanisms, gaps in human resource capacity, and public resistance due to low transparency and concerns about data privacy. Therefore, a governance framework that emphasizes explainability, public participation, and algorithm auditing is essential to maintain accountability and public trust. This article emphasizes that artificial intelligence implementation strategies must be implemented in stages through pilot projects, investment in human resource capacity, and multi-stakeholder collaboration to ensure the sustainability of the technology's benefits in digital governance.

1. Introduction

Digital transformation in the public sector in the last five years has shown significant developments through the use of artificial intelligence (AI) to improve the quality of services and the effectiveness of government decision-making. AI not only functions as an automation technology, but as a strategic instrument to improve the accuracy of analytics and accelerate data-driven policy responses so that it can ensure more efficient and adaptive governance to the dynamics of public needs (World Bank, 2018). This change is of global urgency because traditional governance models are often unable to process increasingly complex volumes of data and require a fast and precise decision-making process in response to the demands of a diverse and evolving society.

Nevertheless, the integration of AI into the public sector is inseparable from multidimensional challenges. AI has ethical, social, and institutional implications that require a robust governance framework so as not to pose a risk of errors in automated decisions or misuse of data (Kuziemski & Misuraca, 2020). Governance challenges also arise when governments face limitations in explaining how algorithms work and how policies are generated from the process. Technological instruments that are “black boxes” can reduce the public’s right to know the basis for decision-making, so the need for transparency and accountability is increasingly crucial to maintain social trust (Andrews et al., 2022). If the elements of public trust are not managed properly, public resistance can arise and hinder the sustainability of technology implementation.

In addition, the readiness of human resources and digital infrastructure is also a major issue in the effectiveness of AI implementation. The government must build adequate technical competence and develop a data-driven work culture so that AI provides real added value in the government process (Khan & Al-Badi, 2020). Inequality in digital capacity between agencies can trigger service gaps that have implications for widening disparities in the quality of public services. Therefore, cross-sectoral collaboration with academia and industry is needed to accelerate technology transfer and improve the internal capabilities of public organizations (Da Silva et al., 2022).

Public acceptance and trust in AI-based decision-making also greatly determine the success of digital policy implementation. Public perception of fairness, data security, and privacy protection is a factor that can strengthen or weaken the legitimacy of the use of technology in government (Maulana et al., 2022). When people feel disadvantaged or lack of clarity of information, loss of trust can encourage social rejection of technological innovation. Therefore, it is important for the government to provide mechanisms for public participation, complaints, and education that can bridge the understanding between policies and community needs.

Recent literature emphasizes the importance of designing AI strategies that consider sustainability principles—i.e., the technology's ability to deliver long-term benefits without sacrificing democratic values, inclusivity, and human rights (Wilson & van der Velden, 2022). The sustainability-oriented approach underlines that technological success is measured not only by technical efficiency, but also by

improving the quality of public governance, equity of access, and the protection of community values.

Based on this description, this study aims to conduct an in-depth narrative study of the strategy of applying AI in sustainable public decision-making. The focus of the research is directed at three main dimensions: accountable AI governance, institutional and technological capacity readiness, and public legitimacy in the implementation of AI in the government sector. Through a review of the latest scientific literature in the last five years, this article is expected to be able to present a comprehensive conceptual understanding as well as policy recommendations that can be used as a guideline in designing AI implementations that are not only technically efficient, but also normatively and socially strong.

2. Literature Review

2.1. AI and Digital Transformation in the Public Sector

The adoption of artificial intelligence (AI) in the public sector is part of a wave of digital transformation that is transforming the governance and delivery of public services. AI is seen as a tool to improve administrative efficiency, speed up decision-making processes, and support evidence-based policies through deeper data analytics. Reports by international institutions place AI as a key component in modernizing governance that drives more responsive and results-oriented services (World Bank, 2018). Applied research in the context of smart cities and transportation shows that the integration of AI with edge computing infrastructure (fog computing) and data interoperability systems can yield significant operational

benefits when supported by technical standards and cross-stakeholder collaboration (Nikitas et al., 2020).

However, digital transformation practices in government face challenges such as limited infrastructure capacity, inter-institutional data fragmentation, and the need for policies that govern data exchange and quality. The literature emphasizes a phased approach through pilot projects and interoperability frameworks to build a reliable data ecosystem. Thus, AI cannot stand alone; Its success depends on technical readiness, data standards, and collaboration between governments, academia, and the private sector as a source of innovation and operational support. A coordinated policy approach and the development of an implementation roadmap are often recommended by the literature as a first step to ensure inter-agency synergy and technical standardization. In conclusion, the development of a mature ecosystem is a prerequisite for AI to provide long-term benefits in public governance.

2.2. AI Governance: Transparency, Accountability, and Trust

AI governance is the main focus in the study of technology adoption in the public sector because it involves elements of transparency, accountability, and protection of public rights. Research shows that decision automation without explainability and audit mechanisms has the potential to reduce the level of government accountability and cause algorithmic bias (Kuziemski & Misuraca, 2020). For this reason, various studies recommend the development of a trust framework that integrates algorithmic audits, ethics standards, and independent oversight mechanisms as the operational basis of public AI (Andrews et al., 2022).

Cross-country evidence shows that countries that implement model transparency and public engagement policies tend to be more successful in maintaining the legitimacy of AI applications in public services (Van Noordt & Misuraca, 2022).

In addition, public participation and stakeholder engagement from the design phase can enrich the values of justice and inclusivity in the system thereby reducing social resistance. Strengthening model documentation, accessible audit mechanisms, and complaint channels are aspects of governance that often appear in the literature as a prerequisite for safeguarding the rights of citizens affected by automated decisions. Best practices show that a combination of regulation (e.g., right to explanation), technical standards, and participatory mechanisms help minimize AI normative risks as well as strengthen institutional legitimacy. In short, AI governance is not just about technical regulation; It also demands an organizational culture that supports internal audits, model documentation, and grievance channels for the affected public.

2.3. Organizational Capacity and Resources for AI Implementation

Organizational capacity and human resources are the determining factors for the success of AI adoption in government. Studies show that many public institutions do not yet have adequate technical competencies, including data management capabilities, cybersecurity, and the ability to assess the quality of analytical models (Khan & Al-Badi, 2020). This gap is exacerbated by undirected resource allocation and low investment in training and digital infrastructure. The literature recommends the establishment of capacity-building programs, centers of

excellence, and partnerships with academia and the private sector for technology transfer and improvement of practical skills (Nugroho & Azmi, 2021).

In addition, the pilot approach serves as an organizational learning tool that allows for risk evaluation before large-scale, as well as an opportunity for institutions to test governance procedures and audit mechanisms. Incentive policies and funding support are also important to ensure the operational continuity of AI systems. Implementation strategies should include a tiered capacity building plan, talent retention mechanisms, and long-term funding policies so that technology adoption does not stop at the trial stage. In practice, a combination of human resource investment, cross-sector collaboration, and scalable pilots will accelerate the transition from experimentation to systemic and sustainable adoption.

3. Methods

This research method uses a systematic narrative literature study approach to synthesize and interpret empirical evidence and theoretical studies on the application of artificial intelligence (AI) in public decision-making. The narrative approach was chosen because the research aims to bring together various types of peer-reviewed article sources, conference proceedings, and policy reports with the publication time, which is the last five-year span, so as to be able to capture the development of relevant concepts, policies, and implementing practices. The first step is to identify the literature through the Google Scholar indexed academic database using a combination of keywords such as “artificial intelligence public sector”, “AI

governance”, “sustainable AI”, “automated decision-making”, and “data-driven policy”.

Inclusion criteria include publications published within the last five years, indexed by Google Scholar, have a clear empirical contribution or conceptual framework, and are relevant to governance themes, institutional capacity, and policy implications; Exclusion criteria include popular writings without peer-review and studies that do not provide evidence or arguments that can be generalized. From the initial search results of about 120 documents, a gradual screening was carried out: selection based on titles and abstracts, full reading of selected articles, and final selection of several core references that demonstrate relevance and strength of evidence, but the main citations were limited to publications within the last five years according to the study limitations. The analysis was carried out by thematic synthesis: each article was coded to identify recurring patterns and themes such as transparency, explainability, algorithmic auditing, data readiness, human resource capacity, public participation, and pilot-to-scale models and then the themes were integrated into a narrative that linked empirical evidence to policy recommendations.

To improve the validity of the findings, the study applied source triangulation by comparing the results of cross-border empirical studies, international policy reviews, and technical studies on the implementation of AI in the context of smart cities and public services. The limitations of this method are recognized: narrative review is not as rigorous as systematic review or meta-analysis in complete replication of the selection process and quantitative analysis, and is vulnerable to selection bias; To mitigate, the authors selected reputable sources, compiled explicit

inclusion criteria, and focused citations on the studies with the most relevant contributions. In practical terms, this synthesis also refers to AI governance methodologies and guidelines for the validation of analytical frameworks, such as the principles of transparency and auditing put forward by Kuziemski & Misuraca (2020), as well as the trust framework approach discussed by Andrews et al. (2022) and the recommendations of the World Bank report (2018) on the management of public data for relevant national policy contexts.

4. Results

The results of the synthesis of the literature review reveal a series of integrated findings that illustrate the conditions, opportunities, and barriers to the implementation of AI in public decision-making. In general, the literature of the last five years shows that AI has a transformative capacity for administrative processes and public policies, but the realization of these benefits is strongly influenced by governance readiness, data quality, institutional capacity, and public trust. This analysis formulates seven key findings: (1) the functional potential of AI and the acceleration of analytics, (2) governance challenges and normative risks, (3) organizational capacity and resources, (4) dimensions of public trust and participation, (5) recurrent packages of policy recommendations, (6) variation in implementation outcomes between institutional contexts, and (7) the need for long-term evaluation.

First, the evidence shows the real functional potential of AI in various domains of government, especially in accelerating analytical processes, detecting

anomalies, and improving policy predictability. International reports and applied studies confirm that machine learning techniques can process large volumes of data to generate recommendations faster than conventional manual practices (World Bank, 2018). In smart city implementations, for example, AI is used to manage traffic flow, predict congestion, and optimize public service response times. The integration of AI with edge computing architectures has also been proven to be able to improve the system's ability to perform real-time processing, provided it is supported by interoperability, uniform data standards, and cross-agency coordination (Nikitas et al., 2020). In the disaster sector, predictive algorithms have been proven to improve the accuracy of early warnings, map vulnerable areas, and accelerate emergency agency operational response times (Horita et al., 2018). With the global trend towards digital governance, the benefits of AI are predicted to expand further as public data capacity and the quality of digital infrastructure increase.

Second, the study identifies systemic governance challenges. The implementation of AI without an adequate governance framework risks reducing accountability, widening injustice, and causing negative normative impacts such as algorithmic bias and lack of the right to explanation (Kuziemski & Misuraca, 2020). This problem often arises when mathematical models and algorithmic logic are hidden behind closed systems, making automated decisions difficult to account for by the government institutions that use them. Cross-country studies have found that unclear algorithm audit standards, lack of fairness guidelines, and weak transparency requirements can magnify the risk of public delegitimization when systems are implemented on a broad scale (Van Noordt & Misuraca, 2022). Therefore, the

literature emphasizes the need for trust frameworks that incorporate independent audits, publicly understandable model explanations, and clear grievance mechanisms to maintain a balance between innovation and the protection of citizens' rights (Andrews et al., 2022). Without strong governance, AI's technical capabilities have the potential to generate greater social risks than benefits.

Third, aspects of organizational capacity and resources emerge as practical obstacles that are often mentioned. Many government agencies experience a shortage of data experts, limited information management capabilities, and weak cybersecurity infrastructure are all critical factors for reliably maintaining and operating AI systems (Khan & Al-Badi, 2020). The digital divide does not only occur between citizens, but also between government agencies, thus affecting the ability to implement. Policy case studies show that capacity-building programs, the establishment of centers of excellence, and strategic partnerships with academics or the private sector are effective solutions to catch up with competency lag (Nugroho & Azmi, 2021). The systematic pilot approach provides room for controlled experiments before nationwide implementation, so that failures can be identified earlier (Da Silva et al., 2022). In addition, improving data literacy for decision-makers is critical because AI systems are only effective if their users are able to interpret the results of their analysis.

Fourth, the dimensions of public trust and participation are social prerequisites for the success of public AI programs. The results of the study show a strong relationship between the transparency of the automated decision-making process and the level of public acceptability. When citizens obtain an understandable

explanation of how the system works, the basis for decision-making, and the guarantee of rights protection, the legitimacy of the system increases significantly (Wilson & van der Velden, 2022). In contrast, the perception of risk arises when technology is perceived as threatening privacy, unfair, or over-automating government functions. Perception research highlights differences in attitudes between groups: younger generations tend to be more receptive to technology as long as there is evidence of benefit, while vulnerable groups need additional protection to avoid bias and exclusion of services (Maulana et al., 2022). Therefore, public participation from the design phase is crucial in building a sense of belonging, strengthening legitimacy, and reducing mistrust.

Fifth, the study translates empirical findings into a package of policy recommendations that are repeated in various literatures. The recommendations include: (a) the drafting of an adaptive regulatory framework that establishes the basic principles of the use of AI such as fairness, non-discrimination, and the right to explanation; (b) the application of algorithmic audit mechanisms, model documentation, and the necessity of non-biased proof; (c) investment in human resources, cybersecurity, and digital infrastructure training; (d) pilot-to-scale strategy with transparent evaluation; and (e) the establishment of a trust framework that integrates technical audits with public accountability mechanisms (Bolton, Raven, & Mintrom, 2021). These recommendations emphasize that the success of public AI is highly dependent on the ecosystem that supports not just the technology.

Sixth, there are variations in implementation results depending on the institutional context, the level of collaboration between institutions, and the maturity

of data. Countries or agencies with mature data ecosystems, high interoperability, and good coordination practices tend to reap the benefits of AI more quickly. In contrast, in locations with data fragmentation, lack of interoperability standards, and weak coordination, AI projects often stall at the pilot stage and fail to scale (Van Noordt & Misuraca, 2022). The context-fit factor is the main differentiator between success and failure. In some studies, the ability to explain automated decisions (explainability) is even a determining factor in public acceptance; systems with non-transparent logic are often rejected or cause citizen resistance (Kuziemski & Misuraca, 2020). These findings suggest that AI technology must be aligned with the prevailing institutional structures, legal rules, and socio-cultural values.

Seventh, the study highlights the need for long-term evaluation. The majority of studies are still in the exploratory phase, so longitudinal research is needed that is able to assess the impact on work culture, bureaucratic structure, and society perceptions that are gradually changing (Bolton et al., 2021; Levy et al., 2021). Success evaluation cannot rely solely on efficiency indicators; Measures of fairness, transparency, accountability, and protection of rights should be part of the assessment. In addition, the government needs to develop an exit protocol to anticipate risks if the system is proven to be detrimental to citizens or fails to meet ethical standards.

The synthesis results show that AI has a great capacity to significantly improve public decision-making, but the realization of these benefits is highly dependent on governance readiness, institutional capacity, data integrity, and public legitimacy. The most recommended strategy in the literature is a phased approach that combines a

scalable pilot, algorithmic audits, HR capacity building, and a trust framework as a normative foundation. Thus, AI is not only an instrument of technological modernization, but a tool to improve the quality of public governance, improve policy fairness, and encourage more adaptive and sustainable governance.

5. Discussion

The results of the synthesis confirm that the application of AI in public decision-making brings the promise of higher efficiency and policy quality, but this promise will only be realized if there is a combination of technical innovation and mature governance. Conceptually, the literature suggests that focusing solely on technical capabilities such as improving model accuracy or algorithm optimization without paying attention to explainability and audit mechanisms will lead to dissonance between technical outcomes and social legitimacy (Kuziemski & Misuraca, 2020). In other words, the success of public AI is not just a matter of “whether the model works” but also “how it is described, audited, and accounted for”.

From a policy perspective, a trust framework is needed that is not only a collection of formal rules but also a set of operational practices that links technical audits to public accountability mechanisms (Andrews et al., 2022). This kind of framework should establish model documentation standards, periodic audit procedures, and complaint procedures that are easily accessible to the public. In addition, policies must balance the need for transparency with data protection and security because full openness without protection can create new risks. Therefore,

adaptive policies that allow for controlled experimentation (regulatory sandboxes) while applying ethical principles will be a pragmatic instrument for governments that want to innovate responsibly (Van Noordt & Misuraca, 2022).

From an organizational perspective, capacity is a determining variable: institutions that have technical and managerial capacity are better able to manage the life cycle of AI systems from design, testing, to maintenance than institutions that do not have these resources (Khan & Al-Badi, 2020). Therefore, long-term investments in HR training, the establishment of a center of excellence unit, and partnerships with academia or the private sector should not be seen as mere additional costs, but rather as a foundation for sustainable implementation. A planned pilot-to-scale strategy allows organizations to learn, improve governance, and adjust government business models before fully scaling (Da Silva et al., 2022).

The social aspect, especially public trust, is a measure of success that is often overlooked in technical design. Research shows that public engagement and proactive communication regarding data protection goals, limitations, and mechanisms can increase acceptance of AI systems (Wilson & van der Velden, 2022). Participatory practices involving independent witnesses, representatives of vulnerable communities, and oversight agencies in the design and evaluation process can reduce the risk of discrimination and strengthen policy legitimacy. Thus, the implementation strategy should integrate public engagement activities as an integral part, not as a post-implementation add-on.

Finally, this discussion underscores the importance of a holistic approach: technical, regulatory, organizational, and social must be developed simultaneously.

Without the synchronization of those four domains, AI initiatives tend to fragment succeeding in technical demonstrations but failing in institutional scalability and sustainability. Further research needs to review the long-term dynamics of public AI deployment through longitudinal studies and cross-contextual comparative evaluations, so that policy recommendations can be enriched with empirical evidence on institutional and social impacts that are more resilient.

6. Conclusion

The application of artificial intelligence (AI) in public sector decision-making has great potential to improve the effectiveness, efficiency, and quality of government policies through faster and more accurate data utilization. However, these benefits will not be achieved if technological innovation is not balanced with strong governance, institutional capacity readiness, and adequate public acceptance. The government needs to ensure that there is a regulatory framework that is able to maintain accountability and transparency, including the protection of public rights against potential risks such as algorithmic bias and data misuse.

In addition to normative aspects, human resource readiness, digital infrastructure, and cross-sector collaboration are important foundations for operating AI sustainably. The phased implementation approach through pilot-to-scale provides a learning space for organizations to refine digital policy design before it is widely adopted. At the same time, communication and public engagement strategies must be an integral part of the policy cycle in order to establish the social legitimacy that supports the sustainability of these technologies. The success of AI

in the public sector depends on a balance between technical innovation and public trust-based governance. If managed appropriately, AI can be a transformative instrument towards a more adaptive, inclusive, and future-oriented government.

References

Andrews, P., de Sousa, T., Haefele, B., Beard, M., Wigan, M., Palia, A., ... & Jacquet, A. (2022). A Trust Framework for Government Use of Artificial Intelligence and Automated Decision Making. *arXiv preprint arXiv:2208.10087*.

Bolton, M., Raven, R., & Mintrom, M. (2021). Can AI transform public decision-making for sustainable development? An exploration of critical earth system governance questions. *Earth System Governance*, 9, 100116.

Da Silva, T. P., Batista, T., Lopes, F., Neto, A. R., Delicato, F. C., Pires, P. F., & Da Rocha, A. R. (2022). Fog computing platforms for smart city applications: A survey. *ACM Transactions on Internet Technology*, 22(4), 1-32.

Horita, F. E., de Albuquerque, J. P., & Marchezini, V. (2018). Understanding the decision-making process in disaster risk monitoring and early-warning: A case study within a control room in Brazil. *International journal of disaster risk reduction*, 28, 22-31.

Khan, A. I., & Al-Badi, A. (2020). Emerging data sources in decision making and AI. *Procedia Computer Science*, 177, 318-323.

Kuziemski, M., & Misuraca, G. (2020). AI governance in the public sector: Three tales from the frontiers of automated decision-making in democratic settings. *Telecommunications policy*, 44(6), 101976.

Levy, K., Chasalow, K. E., & Riley, S. (2021). Algorithms and decision-making in the public sector. *Annual Review of Law and Social Science*, 17(1), 309-334.

Maulana, A. O., Herfanda, G. C., & Hasan, F. (2022). Perceived trustworthiness of artificial intelligence implementation in Indonesia public sector services: Gen Z and Millennial perspectives. *Jurnal Akuntansi dan Auditing Indonesia*, 65-75.

Nikitas, A., Michalakopoulou, K., Njoya, E. T., & Karampatzakis, D. (2020). Artificial intelligence, transport and the smart city: Definitions and dimensions of a new mobility era. *Sustainability*, 12(7), 2789.

Nugroho, A. A., & Azmi, I. F. (2021). Alleviating society's economic crisis: narrative policy on social safety nets policy process during Covid-19 pandemic. *Policy & Governance Review*, 5(2), 113-127.

Van Noordt, C., & Misuraca, G. (2022). Artificial intelligence for the public sector: results of landscaping the use of AI in government across the European Union. *Government information quarterly*, 39(3), 101714.

Wilson, C., & Van Der Velden, M. (2022). Sustainable AI: An integrated model to guide public sector decision-making. *Technology in Society*, 68, 101926.

World Bank. (2018). *World development report 2018: Learning to realize education's promise*. World Bank Publications. Retrieved December 12, 2022
<https://share.google/k364kKfoazAaIXBPK>